Phototherapy and Photochemotherapy

<table>
<thead>
<tr>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>We recommend narrowband UVB and medium-dose UVA1 for AE patients with moderate-to-severe AE.</td>
</tr>
</tbody>
</table>

- **↑↑**
- >95% (24/25)
- Expert Consensus

<table>
<thead>
<tr>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>We suggest the use of narrowband UVB or UVA1 in children and adolescents after the assessment of skin type (see background text), but frequent and/or protracted treatment cycles should be avoided.</td>
</tr>
</tbody>
</table>

- **↑**
- >95% (24/25)

| 1 abstention |

<table>
<thead>
<tr>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>We suggest that other phototherapy modalities (balneophototherapy, UVAB, BB-UVB, UVA) are to be considered as a second choice.</td>
</tr>
</tbody>
</table>

- **↑**
- 100% (25/25)

<table>
<thead>
<tr>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>We suggest that PUVA therapy is only used, when previous treatment cycles with other phototherapies were ineffective or when approved drug treatments are contraindicated, ineffective or have caused side effects.</td>
</tr>
</tbody>
</table>

- **↑**
- 100% (25/25)

<table>
<thead>
<tr>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>We suggest co-treatment with topical emollients during phototherapy.</td>
</tr>
</tbody>
</table>

- **↑**
- 100% (25/25)

<table>
<thead>
<tr>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>We recommend against the use of prolonged or repeated treatment cycles and maintenance regimens with all phototherapy modalities.</td>
</tr>
</tbody>
</table>

- **↓↓**
- 100% (24/24)

CC BY NC © EDF – Jun 2022
We recommend against the use of all phototherapy modalities in patients with a history of skin cancer and with an increased risk of skin cancer (including photodamaged skin and those on systemic immunosuppressants (see background text)).

100% agreement (25/25) Expert Consensus

Efficacy of different photo(chemo)therapy modalities in clinical trials

Photo(chemo)therapy can be used in patients with moderate-to-severe AE recalcitrant to topical therapy. Background information on photobiology, UV modalities and practical aspects can be found in Appendix I.

The systematic review of Garritsen et al. investigated the efficacy and safety of treatment with photo(chemo)therapy in AE patients up to 26 October 2012.1 Only RCTs were included. No meta-analysis could be performed due to methodological heterogeneity. Nineteen studies were included with a total of 905 adult participants (sample size range 9 to 180), treatment duration varying between 10 days and 40 weeks, and with a follow-up up to 1 year (mean 15.3 weeks).

Studies on BB-UVB (4 studies, n=120), 2–5 NB-UVB (6, n=188), 6–11 UVA (3, n=84), 4, 5, 10 UVA1 (9, n=259), 6, 8, 9, 12–17 cold-light UVA1 (1, n=50), 17 UVAB (7, n=200), 2, 5, 14, 15, 17–19 full-spectrum light (1, n=20), 20 PUVA (2, n=29), 7, 16 visible light (1, n=20), 3, 10 and balneophototherapy (1, n=90) were included. 11 Concomitant emollient use was permitted in all the RCTs. Detailed tables including patient and treatment characteristics, study outcomes and GRADE assessment can be found in the paper of Garritsen et al. 1 Below is a summary of the results.

Three studies of low9 to moderate quality6, 8 compared medium dose (MD) UVA1 with NB-UVB; no significant difference was found in clinical signs (apart from 1 clinical sign instrument (Leicester Sign Score) in favour of NB-UVB in 1 RCT of low-quality9).

Three studies of low15, moderate14 and high17 quality found UVA1 [one medium dose (MD) and two high dose (HD) protocols] to be significantly more effective than UVAB regarding clinical signs and symptoms.14, 15, 17 No significant difference was found between MD-UVA1 and HD-UVA1 after stop of treatment and after 6 months of follow-up in two studies of very low13 (pilot study) and moderate quality (intrapatient, side to side comparison study).12

One low-quality study showed more improvement in clinical signs and symptoms of NB-UVB versus UVA and visible light up to 3 months of follow-up (no statistical significance mentioned).10

One low-quality study showed UVB to be significantly more effective compared to placebo visible light for clinical signs and symptoms.3

One study of very low quality5 and one of low quality9 showed UVAB to be significantly more effective compared to UVA (clinical signs) and BB-UVB (clinical signs and symptoms) respectively. Another study of low quality showed UVA to significantly reduce clinical signs compared to BB-UVB. 4 UVAB combined with topical corticosteroids led to significantly greater reduction in clinical signs and symptoms than UVAB alone in a moderate-quality study.19 UVAB compared to ciclosporin was significantly less effective on the short-term for clinical signs and QoL.18
PUVA turned out to be significantly more effective than MD-UVA1 in clinical signs and duration of remission in one low-quality study. Between PUVA and NB-UVB no significant difference was demonstrated in clinical signs after treatment nor after follow-up up to 1 year in one very low-quality study.

Full-spectrum light (320-5000nm) versus controls with emollients significantly reduced clinical signs up to a follow-up of 4 weeks in one very low-quality study.

Balneophototherapy (saltwater bath plus NB-UVB) was significantly more effective than NB-UVB for clinical signs up to 6 months of follow-up in a low-quality study.

Based on this systematic review conclusions must be drawn carefully, because of small and heterogeneous studies, high degrees of bias and varying levels of evidence. In terms of efficacy most evidence is available for MD-UVA-1 and NB-UVB. No difference was found between HD-UVA1 and MD-UVA1; more evidence was available for MD-UVA1. UVAB was more effective than UVA and BB-UVB, but not compared to UVA1. Other options are PUVA, full-spectrum light and balneophototherapy, but studies were small and of low quality. No suitable RCTs on heliothalassotherapy or Goeckerman therapy (coal tar plus UVB) were found.

Of the two RCTs retrieved from the additional search, the first compared UVA (n=30) with UVB (n=30) thrice weekly for a maximum of 12 weeks, with a follow up of 3 months, in moderate-to-severe AE patients. Both modalities had a similar effect on reduction in clinical signs. The second evaluated HD-UVA1 (130 J/cm²) versus MD-UVA1 (60 J/cm²) five times weekly for 3 weeks in 27 severe adult AE patients. Patients with skin type III-IV responded significantly more to HD-UVA1 than MD-UVA1 concerning clinical signs; patients with skin type II showed no difference between these two.

No evidence on efficacy of phototherapy in acute versus chronic AE was found, and no RCTs for children were found. Apart from some (mostly retrospective) case series, two non-randomized studies have been published. In a comparative non-randomized study, 29 AE children and adolescents, aged 3-16 years, were treated with NB-UVB phototherapy for 12 weeks and compared with 26 patients who chose not to undertake treatment. There was a 61% reduction in mean Six Area, Six Sign Atopic Dermatitis (SASSAD) severity score at week 12 in the NB-UVB cohort compared with an increase of 6% in the unexposed cohort. An open-label trial without control group assessed the effectiveness and safety of NB-UVB phototherapy in 30 AE children, aged 4-14 years. There was a significant reduction in severity at the end of treatment compared to baseline; this effect maintained during 2 years of follow-up.

Concluding this section, we must emphasise that the use of phototherapy for AE is largely empiric and based on relatively few evidence-based data. There is a clear need for further research on the effectiveness and safety of phototherapy in AE, given that it is frequently used in AE patients.

Safety of different photo(chemo)therapy modalities in clinical trials

In the RCTs included in the systematic review of Garritsen and in the additional two RCTs no serious side-effects during the treatment and up to 1 year of follow-up were reported. Short-term side-effects (up to 1 year of follow-up) include xerosis cutis, erythema and burning, pruritus (UVA1 and full-spectrum light), gastrointestinal diseases (balneophototherapy), exacerbations of AE (UVA, NVB-UVB, visible light, full-spectrum light), folliculitis (UVA1, PUVA), and photo-onycholysis (PUVA). The open-label trial performed in children reported grade II erythema, reactivation of herpes labialis and chickenpox as side-effects. Follow-up up to 2 years did not show any significant side-effects.
However, it is evident that our current knowledge on the safety of phototherapy in patients with AE is poor because there are no data from RCTs or registries enrolling large patients’ cohorts and with prolonged follow-up.

These studies are available for patients treated with UVA1,33 BB-UVB and NB-UVB for other indications, mainly psoriasis, and they did not show increased risks of basal cell carcinoma, squamous cell carcinoma and melanoma.34, 35 However, due to the lack of adequate prospective studies a follow up of patients who underwent repeated and protracted treatment cycles is recommended, particularly in lighter skin types.36 The cancerogenic risk of PUVA is well demonstrated in psoriatic patients, and therefore caution is recommended also in AE patients.36,37, 38 However, extrapolating the magnitude of the risk observed with PUVA in patients with psoriasis to the risk in patients with AE is not always correct because psoriatic patients (historically) may have been treated more often with immunosuppressants and / or mutagenic drug therapies.

In patients who use systemic immunosuppressants, especially cyclosporine and azathioprine, phototherapy is not recommended based on their risk of co-carcinogenicity (see chapter Conventional systemic drugs). There are few papers available on combination therapy and the long-term safety in psoriatic patients,39,40 no papers were found specifically for AE. (see separate appendix)
References

